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1. INTRODUCTION

This work defines a two-temperature, relativistic, and isotropic electron distribution function.
This distribution characterizes a collisionless, isotropic, relativistic, and nonequilibrium electron
gas consisting of two populations of electrons: one in temporal thermal equilibrium at a "'cold"
electron temperature, T, with spatial density, n, and the other at a "hot" electron temperature,
T', with spatial density, n'. Nonrelativistic two-temperature electron distributions have been
previously used to characterize bremsstrahlung spectra radiated by laser-generated plasmas. - 4

Recent Argus and Shiva laser-pellet plasma studies at Lawrence Livermore Laboratory have
measured hot electron temperatures as high as 100 keV. 5- 6 At such an electron temperature,
relativistic effects should begin to appear, since the energy equivalent is a significant fraction of
the electron rest energy.

In the nonrelativistic calculations of Eidmann.2 the electron distribution is Maxwellian at
temperature T for electron energies less than some "knee energy," E.; continuous; and Max-
wellian at some temperature T' > T for energies greater than E.. The knee energy, E., is simply
a phenomenological parameter. More recently, Wickens, Allen, and Rumsby4 have used a dis-
tribution function in configuration space, which is explicitly the sum of two nonrelativistic
Maxwellians-one at a cold temperature and the other at a hot temperature. This distribution
function is characterized by the respective cold and hot electron temperatures and densities. The
two-temperature electron distribution formulated in the present work addresses the distribution
in momentum space, as does the work of Eidmann; 2 however, modifications are that the distri-
bution be relativistic and characterized by the hot and cold electron spatial densities rather than
by a phenomenological knee energy.

In a future report,7' * calculations will be documented for bremsstrahlung spectra from rela-
tivistic two-electron temperature plasmas based on this distribution function. This work has been
conducted in the spirit of Bekefi et al, that, "theoretical spectra must be generated for a variety
of reasonable distribution functions of electron velocities." 8

In section 2, the Rittner distribution is reviewed. 9- 2 This distribution is the relativistic
generalization of the equilibrium Maxwell distribution. The associated relationship between tem-
perature and average particle energy is also discussed.

In section 3, a two-temperature electron distribution is defined as the sum of two Jfittner

George Bekefi. Principles of Laser Plasmas, Wiley-lnterscience, New York (1976).

K. Eidmann, Plasma Physics. 17 (1975). 121.
Kent Estabrook and W. L. Kruer, Phys. Rev. Let.. 40 (1978), 42.
L. M. Wickens, J. E. Allen, and P. T. Rumsby, Phys. Rev. Let. 41 (1978). 243.

5 B. L. Pruett, K. G. Tirsell, H. N. Kornblum. S. S. Glaros. and V. L. Slivinsky, Bull. Am. Phys. Soc., 23, 7(1978).
806.

'H. N. Kornblum, B. L. Pruett, K. G. Tirsell, and V. W. Slivinsky. Bull. Am. Phys. Soc., 23, 7 (1978), 806.
Howard E. Brandt, Bull. Am. Phys. Soc. 23, 7 (1978), 854.

'George Bekefi, Principles of Laser Plasmas, Wiley-lnterscience. New York (1976). 599.
'George Bekefi. Radiation Processes in Plasmas, John Wi%L. Ncw York (1966), 49.

J. L. Synge, The Relativistic Gas. North-Holland. Amsterdam (1957).
F. Juttner, Ann. d. Phys. 34 (191 la). 856.
W. Pauli. Theory of Relativity, Pergamon Press, New York (1958). 139.
Part of this work was presented at the 20th Annual Meeting of the Division of Plasma Physics. Am. Phys. Soc. inColorado Springs.



distributions: one at a col temperature, T, and spatial density, n, and the other at a hot
temperature, T', and density, n'. The relationship between average electron energy and temper-
ature is also determined. Finally, an expression for the "knee" kinetic energy (in the neighbor-
hood of which the logorithm of the distribution function has a characteristic knee) is derived in
terms of the cold and hot electron temperatures and densities.

2. THE j"TrNER DISTRIBUTION

The electron distribution function for a relativistic electron gas in which the electrons are in
their most random or equilibrium state is given by the J(lttner distribution ,"

f(p, T, n) = np#[4frmcK,( mcs) - exp{-fl[(mc2)2 + (pc)S]111 (1)

Here, p is the magnitude of the relativistic electron momentum, n is the spatial electron density,
T is the electron temperature, m is the mass of the electron, and c is the speed of light. The
definition of 0 is

# = (kT)-' , (2)

k is Boltzmann's constant, and K 2(a) is the second-order modified Bessel function of the second
kind defined by the definite integral 2

K,(a) = a7r" 2 [2r()-' f dx x(x2 - 1)" exp(- ax) (3)

and

r(N) = 7r1/2/2 (4)

One observes that the relativistic distribution of equation (I) is of the canonical Maxwellian
form,

f(p) - A exp(- E) , (5)

where A is a normalization constant and E is the single-particle energy given relativistically by

E(p) = [(mc 2 ) + (pc) 2 ]"12  (6)

The normalization constant A is such that

f dpf(p) n ,(7)

where the integral is over all of single-particle momentum space and n is the particle number
density in space. Substituting equations (5) and (6) in the normalization condition, equation (7).
then

A = n[47r p2dpexp-1j-[(mc 2)2 + (pc) 2] 1 2} (8)

George Bekefl. Radiation Processes in Plasmas, John Wiley. New York (1966). 49.
J. L. Synge. The Relativistic Gas, North-Holland. Amsterdam (1957).
F. Juttner. Ann. d. Phys.. 34 (191 Ia). 856.
W. Pauli. Theory of Relativity. Pergamon Press. New York (1958). 139.
.I S. Gradschteyn and I. M. Ryzhik. Tables of Integrals. Series. and Pr-h'mcts. Academic Press (1965). 323.

6



Changing the variable of integration by

p = mc(x' - 1)1/2 (9)
and noting then that

dp = mcx(x - 12 2 dx (10)

then equation (8) becomes

A = n[4r(mc)3f dx x(x' - I)"' exp(- Pmc
2x)] - ' (11)

Next, using the definition of the second-order modified Bessel function K 2(a) of equation (3),
then equation (II) becomes

A = np[47r m2cK 2(jAmc2)] - I

Finally, combining equations (5), (6), and (12). one obtains the Jittner distribution, equation (I).

The relationship between average electron kinetic energy and temperature for the Jittner
distribution differs significantly from that of the familiar nonrelativistic Maxwell distribution. For
the relativistic gas, the average energy. L, of an electron is given by

L = n-1 J d3pE(p)f(p) , (13)

where the single-particle energy E(p) is given by equation (6). the integral is over all of single-
particle momentum space, and f(p) is the Jittner distribution given by equation (I). Explicitly
then. equation (13) becomes

E = d'p[(mc') 1 + (pc) 2 ]1"2 1[41rm 2cK,(13mc)] -
I exp{- #[(mc2) 2 + (pc)2 112}  (14)

One notes that equation (14) may be rewritten as

_ = -13[4rm'cK2 (8mc2 )-'(/O)A9) f d pexpl-3[(mc) + (pc)z] 'z} , (15)

and substituting equation (12) in equation (15), then

At = -An-t(a/8l) d3pexp{-P[(mc) 2 + (pc)r] 2 ) (16)

Next, substituting equation (8) in equation (16). then

E =-[f[d
3pexp{- p[(mc 2 )2

+ (pC)21112] (8/08)1 d'p exp{- 3[(mc2 ) + (p0)1]"} (17)

or equivalently,

E = -al/f3 In Z , (18)

where the quantity Z is defined by

Z= f d 3p exp{-O[(mc-') + (pc)2 ]12
1 (19)

7



Using equations (8) and (12) in equation (19), then

Z = f#-'47Tm 2cK,(Omc 2)j (20)

Substituting equation (20) into equation (18), then

E = -o/31n{f6-1[41rm2 cK2 (8mc 2 )} , (21)

or, simplifying equation (21), then
k = P-' + mc 2 K(f8mc 2) , (22)

where the function K(x) is defined by

K(x) = -K2(x)/K 2(x) (23)
According to the recursion relation for modified Bessel functions,'4

K2(x) = -K,(x) - 2x-'K 2(x) (24)

Substituting equation (24) in equation (23), then

K(x) = 2x - I + K,(x)/K 2(x) (25)

Finally, substituting equation (25) in equation (22), then

k = 3#-1 + mc 2K,(3mc 2 )/K 2(f#mc 2) (26)

Equation (26) relates the average electron energy to the temperature of the electron gas and the
rest mass of the electron.

The electron kinetic energy, Ek, is of course given by the difference between its energy, E,
and its rest energy, mc 2. namely,

Ek = E - mr 2  (27)

Therefore, using equations (26) and (27), the average electron kinetic energy, Fk, is given by

Ek = 3#-' + mc 2[K,(3mc2 )/K 2(mc') - 1] (28)

Clearly, in the nonrelativistic limit-namely, low temperature or equivalently 6mc
2  l--equa-

tion (28) must reduce to the classical equipartition relation, namely,
Ek - (O)/3-' (29)

To see that this is indeed the case, one uses the following series expansion' for K,,(x).

K.(x) = (7r/2x)" 2 [exp(-x)]{1 + (4n 2 - 1)[8X]-l

+ (4n 2- 1)(4n 2 - 9)[2!(8x) 2]-'

+ (4n 
- 1)(4n 2 - 9)(4n 2 - 25)[3!(8x)] - l +...} (30)

Using equation (30), it then follows that

K,(x)/K 2(x) = I - ()x - ' + (W )x- 2 - (Y )x- 3 + O(x -4 ) (31)

'4 M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions.. National Bureau of Standards. Applied
Mathematics Series 55 (1964), 376-378.
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Using equation (31) in equation (28) and combining terms, then for large [3mnc one has that

Ek = P(3 ']I ()(3mc) - (0)(3mcZ) ' + O[(i3mc2 )-]} (32)

Equation (29) then follows from equation (32).

3. THE RELATIVISTIC TWO-TEMPERATURE ELECTRON DISTRIBUTION

The Juttner distribution, discussed in the preceding section, is the correct relativistic gen-
eralization of the nonrelativistic Maxwell-Boltzmann distribution for a relativistic gas.Y -" The
utility of two-temperature electron distributions in describing nonequilibrium laser plasmas was
briefly discussed in section I. In this section, a relativistic two-temperature electron distribution
is defined and various properties are developed for the electron gas which it describes. In a future
report, calculations will be documented for continuum x-ray spectra from relativistic two electron
temperature plasmas. based on the distribution developed here. 7

Motivated by nonrelativistic two electron temperature phenomenology referred to in section
I. one defines an isotropic relativistic two-temperature electron distribution function fJ2(p) as
the sum of two Jfittner distributions, f(p. T. n) and f(p, TV, n'), the one at a cold electron
temperature. 7'. with spatial density. n, and the other at a hot electron temperature, T', with
spatial density n': thus.

faT(p) =_ f(p, T, n, T'. n') -- f(p, T, n) + ](p, TF, n') (33)

Appropriate normalization conditions are

f d3p.f(p, T, n) n (341

and

f d 3pf(p. V n') = n' (35)

The total density N is

N = n + n' (36)

I Using equations (33) through (36), then

f d3pfJ2(p) = n + n' = N (37)

Substituting equation (1) in equation (33), then

f 2r(p) = nj6[47rm.cK2 (3,Gnc')1 exp{_fp[(mnc2) + (pc) 2]112}

+ n'I3'[4irm2cK.,(I8'mc 2)]- ' exp{-)3'[(mc 2)2 + (pc) 2]112} (38)

where

(3 = (kT)-  (39)

and

,6'= (kT')-' (40)

Howard E. Brandt, Bull. Am. Phy. Soc. 23. 7 (1978). 854.
e(icorge Bekefi. Radiation Processes in Plasmas. John Wiley, New York 1966), 49.

J I.. Synge. The Relativistic Gas. North-Holland, Amsterdam ( 1957).
F. tnner, Ann. d. Phys.. 34 1191 la). 856.

2 W. Pauli, Theory o Relativity. Pergamon Press. New York I 1958), 139.
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Using the normalization equation (7) and equation (33), one easily sees that the normalization
equation 37) is satisfied. Factoring the cold part of the distribution out of fz'r(p) in equation
(8). the latter can be rewritten in the following form

J""(p) = nf3[4iirnrcK2([3mc 2 )] I exp{_-3[(mcZ)z + (pc) 2
11}

* [I + (n'/n)('/3)[K.((3mcZ)/K2(3'nc2 )

Sexp{-(f3' - 1)[(mcn2 ) + (j) (2 J1
2 ]j (41

The two-temperature distribution fr2(p) describes the momentum space oistribution of a relatim-
istic gas f electrons consisting of two populations of electrons of spatial densities ni and n .
iespectively, both isotropically and Rittner distributed, the first at a cold temperature, T. and the
latter at a hot temperature, T'.

For the twe temperature distribution, the average election energy is

E = N ' f d'p[(mc 2 )2 
+ (p" )2 ]'2 1 (42

Substituting equation (33) in equation (42). then

E N ' dP[(mc-)2 + (pc)1]''2[ f(P. 1. n+ + tip. '1'. n)] (431

Equation (43) can he rewritten in the following form,

S(n/N)P( T) + (niN)L'(I') 441

where

n f n- f d'p1[(m ) + (p(')2]'r 1(J). "

and

E( f') = n" if P,:yh4tm,'-
)
2 + (p, 1]':f2p. 1'. 46

Here. E T) and 14 T') are the average energies of the cold and hot electrons. respectively. Lsing
equations (45), 13). (6), and (26). then equation (45) becomes

E(T) = 3f3 -3 + Mc 
2 K ((3mnc()/K 2 ([3mc'() (471

Similarly, equation (46) becomes

L(T') = 33' + mc 2 K,((3'm c")/K 2 ([3'mcnl 48

Substituting equations (47) and (48) in equation (44). and using equation (36), then one obtains
the following expression for the average electron energy.

E(T. n, T', n') = 3(n + n')-(n3- + n')3 -1)
+ Inc 2( n + n')- 1 nK [3mc")/K.,(3nc'

+- n' K 1([3'nc 2 )iKA([3'mnc)] . 491

The average kinetic energies are of course determined by equations (27), (47). (48). and (49).
Thus, the average kinetic energy. kk(T), of the cold electrons is given by

k(T) 30 i + rnc 2[K (l(mc2 )/K 2((3mc2 )_ I] (50)

The average kinetic energy. Ek(T.), of ,ie hot electrons is given by

Ek(T') 30' - 1 + mc 2 [K,((3' mc)/K2 (j3'mnc 2 ) - 1] (511

I (0

A .. : .. i I [ I II I IL . . . "..



Fhe average clection Kinetic energy, E,( 1. n, T', n'). is given by

E01( , n, '1', n') =3(n + W') -(n,8-' + n'f3'-1 ) - nc'

+ inu n -+ it' ) '[ nK (i~nc')/K (Jhnc

+i nK 1 t3'rmc2 )/K 2 ([3'mc2 )I (52)

I he logarithmn of- the Jiittnier equilibrium distribution .1 (1), equation (I) or equation ( 5). as a
f'unction of energy u-: 'or E, ) is inear, with slope -p -', just as is the case for the nonrelativistic
%1ax%%cll distribuitionl. In the case of' the relativistic two-temperature electron distribution, equa-
tion (4 1 I for electron kinetic energies much less than some value E,,, to be referred to here as
the knee energN the slope of In f"' ats at function of E, is nearly linear also. with approximate

0lp '. For electron kinetic energies F,, -- k,. In J"" is also nearly linear, with slope
F3 he knee energ . 1.ik,,. is defined here ats that electron kinetic energy at which the linear

10" clnd high-energy asvnmptotes intersect. Thus, by definition.

1 -- 2-1 f-21 (F, In, /I hL,, t0) + m uE,, (53'

where

and]

ri -Lim (aiiE, ) In J2 (56)

and

tin Li m (it/ it E ), iIn (~ 57)

The electron kntcenergy at the knee.- Ek,,,. is defined by equation (55): namely, it is that
kinetic energy at which the high energy asymptote, 2F ,(Ek,) and the low energy asymptote.
J(,(A) intersect. Clearly. there is considerable arbitrariness in defining the location of the knee.

The definition employed here is both simple and adequate. Substituting equations (53) andi (54)
in equation (55). then

In .1'21 +- in , = In f(0, it' . 7"') + tin NE,,., (58)

Solving equation (58) for the knee energy. E,,, . then

LAA. (m , - tn,, ( - 'ln[J I (O)/f(0, n', V')] .(59)

Using equations (38). (6, and (27). one has that

J"E-nf3[4n-,n2 cK.(f3tnc'1) I ' exp[--- /3(mc + F,,)]

-+ 1[i~i~K3c) exp[-f3'(inc' -+ Ek)-] .(60)

Evaluating equation (60) for Ek 0, then

f"r(0) (47rm~c) {jln(K,(f6inc2) 1- exp(-#t3mc 2 )

+ 6'n'[K2(16'Mc2 )J-' exp(-f3'mc2 )} (61)

A1



Similarl,,. using equations (I). (6). and (27). then

t Ft, '. 1") = n'I3'[4trrn2 (cK.,q3tm -')I exp[-/ 3'(tcI L2 ! )L (62

and. therefore,

1(0, n', 7') = '13'[477~cAz /3'mc"') Iexp(-'mc) (63)

Using equations 06) and (60),

II, Lim ( /dEk ) cnI[3nf4,m~c,'4 c )P xp[-/3m ' 4 iE1 1.

Ek - 0

4 1'[4im ~cK.,)/'m"] 1 exp[-/3'(mcU 1, E.)} (64j

Reducing equation (64), it follows then that

t, - -3{I + (3'/J3)(n'/n)[K .,(3m -K. ,[3'mc )] exp[(13 -- f3' 'nc I
It (/3'/3)(n'!n)[K2 (/31n 1c

2 )/K.,.13'tu-')] exp[(/3 -/'m-t 165,

lhe limiting form of K,i.x) for small argument is given hy 4

Viin;2'-- ' 2) 1006

Using equations (65) and (66), one sees that for /3' -/3 I. n'/n ,+ 1, and /3m- . 1. then one has
approxinatel '

III - / 17

as stated ahoe. Si milarly, using equations (57) and (0). and realizing that 3' g,. one obtains
M Iz , /3 , ,

Finall., substituting equations (61). (634 4651, and 168) in equation (59), then the knee cncgx', -
become"

LA- = /3 '(j -/3'1/j3) 'Il + (,',l'/3(n'/n[K ,,m 2)/K.,(,3'mc 2 )Iexp[(3 - 'lm1 }

In(I + .2n/n )()/')[K /3'm")/K.2 (/3c241 exp[-()3 -- /3')inc"2 1 (691

Equation (69) expresses the knee kinetic energy in terms of the hot and cold electron parameters.
This equation, together with equations (5I', i4). (61), (63). (65). and (68), is useful in cstimating
the effects of hot electrons on the distribution function.

4. CONCLUSION

A relativistic two-temperalure ecli:;jon distribution, equation 44(. has been moti\,aled and
defined. Lxpressions have been obtained for the average electron, cold electron, and hot electron
energies. equations (49). (47), and (48). respectively. Corresponding aserage kinetic energies are
given by equations (521, (50). and (51). respectively. These equations are useful in interpreting \-
ray diagnostics of laser plasmas,7 Provided the electron distribution is of the assumed form, the
inverse low and high cnerg slopes of the logarithm of the continuous x-ray spectrum measure
the cold and hot electron temperatures. respectively, and equations (47) through 52) then deter-

f/ , 1 A. S;egun, tlandbook of \tflicnt'n1iall'.1 tindlrion,. National Hiircati of Standhat . \pohid

o ard F. Brandt. l l \m . Vh . Soc ,11 7 11978). 954.
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mine the respective average electron energies. Also, the knee of the electron distribution function
is determined by equation (69). Expressions (65), (67), and (68) were also obtained for the low
and high energy asymptotic slopes of the logarithm of the electron distribution function. The
logarithm of the distribution function as a function of electron kinetic energy can thus be char-
acterized as approximately linear, with inverse slope equal to the cold temperature up to the knee
energy and linear with inverse slope equal to the hot temperature for kinetic energies greater
than the knee energy. In a future report, calculations will be documented of bremsstrahlung
spectra from relativistic two electron temperature plasmas based on this electron distribution.
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